174.08(x^4)-(25x^3)-(25x^2)-(25x)-125=0

Simple and best practice solution for 174.08(x^4)-(25x^3)-(25x^2)-(25x)-125=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 174.08(x^4)-(25x^3)-(25x^2)-(25x)-125=0 equation:


Simplifying
174.08(x4) + -1(25x3) + -1(25x2) + -1(25x) + -125 = 0

Remove parenthesis around (25x3)
174.08x4 + -1 * 25x3 + -1(25x2) + -1(25x) + -125 = 0

Multiply -1 * 25
174.08x4 + -25x3 + -1(25x2) + -1(25x) + -125 = 0

Remove parenthesis around (25x2)
174.08x4 + -25x3 + -1 * 25x2 + -1(25x) + -125 = 0

Multiply -1 * 25
174.08x4 + -25x3 + -25x2 + -1(25x) + -125 = 0

Remove parenthesis around (25x)
174.08x4 + -25x3 + -25x2 + -1 * 25x + -125 = 0

Multiply -1 * 25
174.08x4 + -25x3 + -25x2 + -25x + -125 = 0

Reorder the terms:
-125 + -25x + -25x2 + -25x3 + 174.08x4 = 0

Solving
-125 + -25x + -25x2 + -25x3 + 174.08x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| m^5=35m^3 | | [6(7x+1)]=180 | | 3u^3+8u-3= | | -14+15n=16 | | 10x^2-45+20=0 | | 16(-10+11y)= | | ln(5x-4)=ln(x-4) | | -7.4x+1.7=-43.1-1.8x | | -3(x-1)=3 | | 3r+2=8 | | 2.5y+5=4y-1 | | 49n^2-36= | | 36-15=3(x-8) | | 2r(r-3)(5r+4)=0 | | -18=9-9 | | y/7=49 | | 36-16=3(x-8) | | 2b+1=-1 | | 4b/2b-5=13 | | 49a^2-70a+25= | | -5x+x+5x=-17 | | 11-12c-13c= | | x+24+3x=-6-3x-12 | | (m+6)*(m+8)=0 | | c/6=6 | | 24/4*3 | | 4x+9-2x=-11 | | 2n^2-18n-72= | | X^2+4x=x^2-6x+5 | | (m+5)*(M+7)=0 | | 4x+5x-7+70=180 | | -9x+1+10x=-23+10 |

Equations solver categories